The Main Problem
 Penalty Problem and Approach
 AIPP Method For Solving the Penalty Subproblem(s)
 Complexity of the Penalty

Complexity of a quadratic penalty accelerated inexact proximal point method

W. Kong¹ J.G. Melo² R.D.C. Monteiro¹

¹School of Industrial and SystemsEngineering Georgia Institute of Technology

²Institute of Mathematics and Statistics Federal University of Goias

ICERM 2019 - April 30th , Providence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1 The Main Problem
- 2 The Penalty Approach
- 3 AIPP Method For Solving the Penalty Subproblem(s)
 - Special Structure of Penalty Subproblem
 - Previous Works
 - AIPP = Inexact Proximal Point + Acceleration

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- AIPP Method and its Complexity
- 4 Complexity of the Penalty AIPP
- 5 Computational Results
- 6 Additional Results and Concluding Remarks

The main problem:

$$(P) \qquad \phi^* := \min \{ \phi(z) := f(z) + h(z) : Az = b, \ z \in \mathbb{R}^n \}$$

where

- $A: \mathbb{R}^n \to \mathbb{R}^l$ is linear and $b \in \mathbb{R}^l$
- h: ℝⁿ → (-∞, ∞] closed proper convex with bounded domain;
- f is differentiable (not necessarily convex) on dom h and, for some L_f > 0,

$$\|\nabla f(z) - \nabla f(z')\| \le L_f \|z - z'\|, \quad \forall z, z' \in \operatorname{dom} h$$

・ロト・西ト・山田・山田・山口・

The main problem (continued):

$$(P) \qquad \phi^* := \min \{ \phi(z) := f(z) + h(z) : Az = b, \ z \in \mathbb{R}^n \}$$

Our goal: Given $(\bar{\rho}, \bar{\eta}) > 0$, find a $(\bar{\rho}, \bar{\eta})$ -approximate solution of (P), i.e., a triple $(\bar{z}, \bar{w}; \bar{v})$ such that

$$ar{v} \in
abla f(ar{z}) + \partial h(ar{z}) + A^* ar{w}, \quad \|ar{v}\| \leq ar{
ho}, \quad \|Aar{z} - b\| \leq ar{\eta}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

It will be achieved via a penalty approach.

For c > 0, consider

$$(P_c) \quad \phi_c^* := \min_z \phi_c(z) := f_c(z) + h(z)$$

where

$$f_c(z) := f(z) + \frac{c}{2} ||Az - b||^2$$

Quadratic Penalty Approach:

- 0. choose initial c > 0
- 1. obtain a $\bar{\rho}$ -approximate solution $(\bar{z}; \bar{\nu})$ of (P_c) , i.e., satisfying

$$\bar{v} \in \nabla f_c(\bar{z}) + \partial h(\bar{z}), \quad \|\bar{v}\| \le \bar{\rho}$$

 if ||Az̄ − b|| ≤ η̄ then stop and output z̄; otherwise, set c ← 2c and go to step 1 For c > 0, consider

$$(P_c) \quad \phi_c^* := \min_z \phi_c(z) := f_c(z) + h(z)$$

where

$$f_c(z) := f(z) + \frac{c}{2} ||Az - b||^2$$

Quadratic Penalty Approach:

- 0. choose initial c > 0
- 1. obtain a $\bar{\rho}$ -approximate solution $(\bar{z}; \bar{\nu})$ of (P_c) , i.e., satisfying

$$ar{\mathbf{v}} \in
abla f_c(ar{\mathbf{z}}) + \partial h(ar{\mathbf{z}}), \quad \|ar{\mathbf{v}}\| \leq ar{\mathbf{\rho}}$$

2. if $||A\bar{z} - b|| \le \bar{\eta}$ then stop and output \bar{z} ; otherwise, set $c \leftarrow 2c$ and go to step 1

Theorem

Let $(\bar{\rho}, \bar{\eta}) > 0$ be given. Assume that $(\bar{z}; \bar{v})$ is a $\bar{\rho}$ -approximate solution of (P_c) and define

$$\bar{w} := c(A\bar{z}-b), \quad R := 2\Delta_{\phi}^* + 2\bar{\rho}D_h + L_f D_h^2$$

where

$$D_h := \sup\{ ||z - z'|| : z, z' \in \text{dom } h\}, \Delta_{\phi}^* := \phi^* - \phi_*, \quad \phi_* := \inf_{z}\{(f + h)(z) : z \in \mathbb{R}^n\}$$

Then, $(\bar{z}, \bar{w}; \bar{v})$ is $(\bar{\rho}, \bar{\eta})$ -approximate solution of (P) whenever

$$c \geq \frac{R}{\bar{\eta}^2}$$

The Main Problem Penalty Problem and Approach AIPP Method For Solving the Penalty Subproblem(s) Complexity of the Penal ••••••••

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Special Structure of Penalty Subproblem

- 2 The Penalty Approach
- (3) AIPP Method For Solving the Penalty Subproblem(s)
 - Special Structure of Penalty Subproblem
 - Previous Works
 - AIPP = Inexact Proximal Point + Acceleration
 - AIPP Method and its Complexity

 The Main Problem
 Penalty Problem and Approach
 AIPP Method For Solving the Penalty Subproblem(s)
 Complexity of the Penalty of the Penalty Subproblem(s)

 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</t

Special Structure of Penalty Subproblem

Recall that the objective function of (P_c) is $\phi_c = f_c + h$ where

$$f_c(z) := f(z) + c ||Az - b||^2/2$$

For every $z, z' \in \text{dom } h$,

$$-m \le \frac{f_c(z') - [f_c(z) + \langle \nabla f_c(z), z' - z \rangle]}{\|z' - z\|^2/2} \le M_c$$

where

$$m := L_f, \quad M_c := L_f + c ||A||^2$$

The complexity of the composite gradient meth for solving (P_c) is

$$\mathcal{O}\left(M_{c}\frac{mD_{h}^{2}}{\bar{\rho}^{2}}\right)$$

which is high for large c, or when $M_c >> m$.

 The Main Problem
 Penalty Problem and Approach
 AIPP Method For Solving the Penalty Subproblem(s)
 Complexity of the Penalty of the Penalty Subproblem(s)

 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</t

Special Structure of Penalty Subproblem

Recall that the objective function of (P_c) is $\phi_c = f_c + h$ where

$$f_c(z) := f(z) + c ||Az - b||^2/2$$

For every $z, z' \in \text{dom } h$,

$$-m \le \frac{f_c(z') - [f_c(z) + \langle \nabla f_c(z), z' - z \rangle]}{\|z' - z\|^2/2} \le M_c$$

where

$$m := L_f, \quad M_c := L_f + c \|A\|^2$$

The complexity of the composite gradient meth for solving (P_c) is

$$\mathcal{O}\left(M_{c}\frac{mD_{h}^{2}}{\bar{\rho}^{2}}\right)$$

which is high for large c, or when $M_c >> m$.

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penal
		00000000	
Den in Minder			

The Main Problem

- 2 The Penalty Approach
- 3 AIPP Method For Solving the Penalty Subproblem(s)
 - Special Structure of Penalty Subproblem
 - Previous Works
 - AIPP = Inexact Proximal Point + Acceleration

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- AIPP Method and its Complexity
- 4 Complexity of the Penalty AIPP
- 5 Computational Results
- 6 Additional Results and Concluding Remarks

 S. Ghadimi and G. Lan "Accelerated gradient methods for nonconvex nonlinear and stochastic programming", published 2016

Complexity:

$$\mathcal{O}\left(\frac{M_c m D_h^2}{\bar{\rho}^2} + \left(\frac{M_c d_0}{\bar{\rho}}\right)^{2/3}\right)$$

The dominant term (i.e., the blue one) is $\mathcal{O}(M_c)$.

• Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford "Accelerated methods for non-convex optimization", arXiv 2017 obtained a $\mathcal{O}(\sqrt{M_c} \log M_c)$ complexity bound under the assumption that h = 0.

Our AIPP approach removes the log M_c from the above bound and the assumption that h = 0

The Main Problem Penalty Problem and Approach AIPP Method For Solving the Penalty Subproblem(s) Complexity of the Penal 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

AIPP = Inexact Proximal Point + Acceleration

- (3) AIPP Method For Solving the Penalty Subproblem(s)
 - Special Structure of Penalty Subproblem
 - Previous Works
 - AIPP = Inexact Proximal Point + Acceleration
 - AIPP Method and its Complexity

AIPP for solving (P_c) is based on an IPP scheme whose *k*-th iteration is as follows. Given z_{k-1} , it chooses $\lambda_k > 0$ and approximately solves the 'prox' subproblem

$$(P_c^k) \quad \min\left\{\lambda_k(f_c+h)(z) + \frac{1}{2}\|z-z_{k-1}\|^2\right\}$$

i.e., for some $\sigma \in (0, 1)$, it computes a point z_k and a residual pair $(v_k, \varepsilon_k) \in \mathbb{R}^n \times \mathbb{R}_+$ such that

$$v_k \in \partial_{\varepsilon_k} \left(\lambda_k (f_c + h) + \frac{1}{2} \| \cdot - z_{k-1} \|^2 \right) (z_k)$$
$$\|v_k\|^2 + 2\varepsilon_k \le \sigma \|z_{k-1} - z_k + v_k\|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

AIPP for solving (P_c) is based on an IPP scheme whose *k*-th iteration is as follows. Given z_{k-1} , it chooses $\lambda_k > 0$ and approximately solves the 'prox' subproblem

$$(P_c^k) \quad \min\left\{\lambda_k(f_c+h)(z) + \frac{1}{2}\|z-z_{k-1}\|^2\right\}$$

i.e., for some $\sigma \in (0, 1)$, it computes a point z_k and a residual pair $(v_k, \varepsilon_k) \in \mathbb{R}^n \times \mathbb{R}_+$ such that

$$v_k \in \partial_{\varepsilon_k} \left(\lambda_k (f_c + h) + \frac{1}{2} \| \cdot - z_{k-1} \|^2 \right) (z_k)$$
$$\|v_k\|^2 + 2\varepsilon_k \le \sigma \|z_{k-1} - z_k + v_k\|^2$$

AIPP method: It is an accelerated instance of the above IPP scheme in which for all *k*:

- $\lambda_k = 1/(2m)$, and hence (P_c^k) is a strongly convex problem
- z_k and (v_k, ε_k) are computed by an accelerated composite gradient (ACG) method applied to (P^k_c) in at most

$$\mathcal{O}\left(\left\lceil \sqrt{\frac{M_c}{m}} \right\rceil\right)$$
 iterations

Obs: Each ACG iteration requires one or two evaluations of the resolvent of h, i.e., exact solution of

$$\min\{a^T z + h(z) + \theta \|z\|^2\}$$

 The Main Problem
 Penalty Problem and Approach
 AIPP Method For Solving the Penalty Subproblem(s)
 Complexity of the Penalty of the Penalty Subproblem(s)

 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</t

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

AIPP Method and its Complexity

The Main Problem

- 2 The Penalty Approach
- 3 AIPP Method For Solving the Penalty Subproblem(s)
 - Special Structure of Penalty Subproblem
 - Previous Works
 - AIPP = Inexact Proximal Point + Acceleration
 - AIPP Method and its Complexity
- 4 Complexity of the Penalty AIPP
- 5 Computational Results
- 6 Additional Results and Concluding Remarks

AIPP Method and its Complexity

- (0) (beginning of phase I) Let c > 0, $z_0 \in \text{dom } h$, $\sigma \in (0, 1)$ and $\bar{\rho} > 0$ be given, and set $\lambda = 1/(2m)$ and k = 1
- (1) call an ACG variant started from z_{k-1} to approximately solve (P_c^k) , i.e., to obtain z_k and (v_k, ε_k) such that

$$\begin{aligned} \mathbf{v}_k &\in \partial_{\varepsilon_k} \left(\lambda(f_c + h) + \frac{1}{2} \| \cdot - \mathbf{z}_{k-1} \|^2 \right) (\mathbf{z}_k) \\ &\| \mathbf{v}_k \|^2 + 2\varepsilon_k \le \sigma \| \mathbf{z}_{k-1} - \mathbf{z}_k + \mathbf{v}_k \|^2 \end{aligned}$$

- (2) if $||z_{k-1} z_k + v_k|| > \lambda \bar{\rho}/10$, then $k \leftarrow k+1$ and go to (1); otherwise, go to (3) (end of phase I)
- (3) (phase II) restart the last call to the ACG variant in step 1 to find \tilde{z} and $(\tilde{v}, \tilde{\varepsilon})$ satisfying

$$\|z_{k-1} - \tilde{z} + \tilde{v}\| \le \frac{\lambda \bar{\rho}}{2}, \quad \tilde{\varepsilon} \le \lambda \frac{\bar{\rho}^2}{32(M_c + 2m)}$$

and then refine $(\tilde{z}; \tilde{v}, \tilde{\varepsilon})$ to obtain a $\bar{\rho}$ -approximate solution $(\bar{z}; \bar{v})$ for (P_c) .

AIPP Method and its Complexity

- (0) (beginning of phase I) Let c > 0, $z_0 \in \text{dom } h$, $\sigma \in (0, 1)$ and $\bar{\rho} > 0$ be given, and set $\lambda = 1/(2m)$ and k = 1
- (1) call an ACG variant started from z_{k-1} to approximately solve (P_c^k) , i.e., to obtain z_k and (v_k, ε_k) such that

$$\begin{aligned} \mathbf{v}_k &\in \partial_{\varepsilon_k} \left(\lambda(f_c + h) + \frac{1}{2} \| \cdot - \mathbf{z}_{k-1} \|^2 \right) (\mathbf{z}_k) \\ &\| \mathbf{v}_k \|^2 + 2\varepsilon_k \le \sigma \| \mathbf{z}_{k-1} - \mathbf{z}_k + \mathbf{v}_k \|^2 \end{aligned}$$

- (2) if $||z_{k-1} z_k + v_k|| > \lambda \bar{\rho}/10$, then $k \leftarrow k+1$ and go to (1); otherwise, go to (3) (end of phase I)
- (3) (phase II) restart the last call to the ACG variant in step 1 to find \tilde{z} and $(\tilde{v}, \tilde{\varepsilon})$ satisfying

$$\|z_{k-1} - \tilde{z} + \tilde{v}\| \le \frac{\lambda \bar{\rho}}{2}, \quad \tilde{\varepsilon} \le \lambda \frac{\bar{\rho}^2}{32(M_c + 2m)}$$

and then refine $(\tilde{z}; \tilde{v}, \tilde{\varepsilon})$ to obtain a $\bar{\rho}$ -approximate solution $(\bar{z}; \bar{v})$ for (P_c) .

 The Main Problem
 Penalty Problem and Approach
 AIPP Method For Solving the Penalty Subproblem(s)
 Complexity of the Penalty of the Penalty Subproblem(s)

 00
 00
 000000000
 000000000
 000000000

AIPP Method and its Complexity

Theorem

The total number of ACG iterations is

$$\mathcal{O}\left(\frac{\sqrt{M_c m}}{\bar{\rho}^2}\min\left\{\Delta_0^*(c), mD_h^2\right\} + \sqrt{\frac{M_c}{m}}\log\left(\max\left\{1, \frac{M_c}{m\sqrt{m}}\right\}\right)\right)$$

where D_h is the diameter of dom h and $\Delta_0^*(c) = \phi_c(z_0) - \phi_c^*$

Hence, the complexity of the AIPP method is

$$\mathcal{O}\left(\sqrt{M_cm}\,\frac{mD_h^2}{\bar{\rho}^2}\right)$$

while that of the CG or Ghadimi-Lan's AG is

$$\mathcal{O}\left(M_{c}\frac{mD_{h}^{2}}{\bar{\rho}^{2}}\right)$$

(日) (四) (日) (日) (日)

AIPP Method and its Complexity

Theorem

The total number of ACG iterations is

$$\mathcal{O}\left(\frac{\sqrt{M_c m}}{\bar{\rho}^2}\min\left\{\Delta_0^*(c), mD_h^2\right\} + \sqrt{\frac{M_c}{m}}\log\left(\max\left\{1, \frac{M_c}{m\sqrt{m}}\right\}\right)\right)$$

where D_h is the diameter of dom h and $\Delta_0^*(c) = \phi_c(z_0) - \phi_c^*$

Hence, the complexity of the AIPP method is

$$\mathcal{O}\left(\sqrt{M_cm}\,\frac{mD_h^2}{\bar{\rho}^2}\right)$$

while that of the CG or Ghadimi-Lan's AG is

$$\mathcal{O}\left(M_{c}\frac{mD_{h}^{2}}{\bar{\rho}^{2}}\right)$$

 The Main Problem
 Penalty Problem and Approach
 AIPP Method For Solving the Penalty Subproblem(s)
 Complexity of the Penalty of th

Complexity of the quadratic penalty AIPP: Recall that a sufficient condition for attaining $||A\bar{z} - b|| \leq \bar{\eta}$ is that $c \geq R/(\bar{\eta})^2$ where

$$R := 2\Delta_{\phi}^* + 2\bar{\rho}D_h + L_f D_h^2$$

Theorem

The quadratic penalty AIPP method performs a total of at most

$$\mathcal{O}\left(\frac{\sqrt{R}\|A\|L_f^{3/2}D_h^2}{\bar{\rho}^2\bar{\eta}} + \frac{L_f^2D_h^2}{\bar{\rho}^2}\right)$$

人口 医水黄 医水黄 医水黄素 化甘油

ACG iterations to find a $(\bar{\rho}, \bar{\eta})$ -approximate solution of (P)

Hence, the complexity of the penalty AIPP is $\mathcal{O}\left(1/(\bar{\rho}^2\bar{\eta})\right)$

 The Main Problem
 Penalty Problem and Approach
 AIPP Method For Solving the Penalty Subproblem(s)
 Complexity of the Penalty of th

Complexity of the quadratic penalty AIPP: Recall that a sufficient condition for attaining $||A\bar{z} - b|| \leq \bar{\eta}$ is that $c \geq R/(\bar{\eta})^2$ where

$$R := 2\Delta_{\phi}^* + 2\bar{\rho}D_h + L_f D_h^2$$

Theorem

The quadratic penalty AIPP method performs a total of at most

$$\mathcal{O}\left(\frac{\sqrt{R}\|A\|L_f^{3/2}D_h^2}{\bar{\rho}^2\bar{\eta}} + \frac{L_f^2D_h^2}{\bar{\rho}^2}\right)$$

ACG iterations to find a $(\bar{\rho}, \bar{\eta})$ -approximate solution of (P).

Hence, the complexity of the penalty AIPP is $\mathcal{O}\left(1/(\bar{\rho}^2\bar{\eta})\right)$

Computational Results

- AIPP was benchmarked against Ghadimi-Lan's AG method
- The nonconvex optimization problem tested was

$$\min_{z \in S_{+}^{n}} \left\{ f(z) := -\frac{\xi}{2} \| D\mathcal{B}(z) \|^{2} + \frac{\tau}{2} \| \mathcal{A}(z) - b \|^{2} : z \in P_{n} \right\}$$

where P_n is the unit spectraplex, i.e.,

$$P_n := \{z \in S^n_+ : \operatorname{tr}(z) = 1\}$$

 $\mathcal{A}: \mathcal{S}^n \to \mathbb{R}^n, \ \mathcal{B}: \mathcal{S}^n \to \mathbb{R}^l$ are linear operators, D is a positive diagonal matrix, $b \in \mathbb{R}^n$

 Values in A, B and b were sampled from the U[0, 1] distribution at sparsity level d and values for D were sampled from U[0, 1000] distribution

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penalt

Results for composite unconstrained problems						
	(/ =	50, <i>n</i> = 200,	d = 0.02	5, $ar{ ho}=10^{-2}$	-7)	
Size	e	Ē	Iteratio	n Count	Run	time
M	т		AG	AIPP	AG	AIPP
1000000	1	3.84E+01	7039	1760	517.72	92.68
100000	1	3.82E+00	7041	1564	512.92	83.85
10000	1	3.67E-01	7064	2770	511.87	142.52
1000	1	2.05E-02	7305	3087	532.94	159.03
100	1	-1.74E-02	8670	2258	807.36	146.33
10	1	-3.65E-02	5790	1561	793.71	141.38

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ▼

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penalt

Results for composite unconstrained problems						
	(l =	50, $n = 1000$,	d = 0.00	1, $ar{ ho}=10^{\circ}$	-7)	
Size	e	Ē	Iteratio	n Count	Run	time
M	т		AG	AIPP	AG	AIPP
1000000	1	2.98E+03	2351	883	3625.82	923.69
100000	1	2.98E+02	2351	668	3820.18	713.07
10000	1	2.97E+01	2347	608	3793.74	660.79
1000	1	2.91E+00	2312	588	3625.51	626.42
100	1	2.28E-01	1969	582	3076.48	618.78
10	1	-6.80E-02	603	179	1034.78	204.82

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ▼

- QP-AIPP was benchmarked against a penalty version of G-L's AG method
- The linearly constrained nonconvex optimization problem tested was

$$\min_{z \in S_+^n} \left\{ f(z) = -\frac{\xi}{2} \| D\mathcal{B}(z) \|^2 : z \in P_n, \ \mathcal{A}(z) = b \right\}$$

where $\mathcal{A}: \mathcal{S}^n \to \mathbb{R}^n$, $\mathcal{B}: \mathcal{S}^n \to \mathbb{R}^l$ and D were generated as before.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• b was chosen so as to make 1/n feasible

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penalt

Results for composite linearly constrained problems					
(/	= 50, n = 20), $d = 1$, d	$\bar{o} = 10^{-3}$, $ar{\eta}=10^-$	6)
L _f	Ē	Iteratio	n Count	Run	time
Lf	F	AG	AIPP	AG	AIPP
1000000	-1.49E+03	110415	17673	169.22	30.11
100000	-1.49E+02	110414	17673	169.67	30.26
10000	-1.49E+01	110386	17673	170.17	30.02
1000	-1.49E+00	110135	17673	169.15	30.00
100	-1.49E-01	107942	17393	183.78	31.56
10	-1.49E-02	96776	16499	170.62	30.44

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penalt

Results for composite linearly constrained problems					
(/= 5	50, $n = 100$,	d = 0.001	.5, $ar{ ho}=10$	0^{-3} , $ar{\eta}=1$	10 ⁻⁶)
L _f	Ŧ	Iteratio	n Count	Run	time
Lf	1	AG	AIPP	AG	AIPP
1000000	-5.22E+04	33330	6426	159.30	27.96
100000	-5.22E+03	33290	5405	173.25	24.16
10000	-5.22E+02	32897	3897	157.55	18.58
1000	-5.22E+01	29611	8321	144.01	36.31
100	-5.22E+00	17289	7042	83.07	31.80
10	-5.22E-01	5917	4644	29.93	21.36

Implementation Remarks

• Even though Phase II is theoretically needed, it was never needed for solving the instances in our test.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• λ_k has been chosen aggressively in all instances, i.e., $\lambda_k > 1/m$.

Additional results

$$p_* := \min_x \left\{ f(x) + h(x) : Ax = b \right\}$$

where now

$$f(x) = \max_{y \in Y} \Phi(x, y)$$

Assume that Y is a closed convex set whose diameter

$$D_y := \sup_{y,y'\in Y} \|y-y'\|$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

is finite

It is also assumed that

- $\Phi(x, \cdot)$ is concave on Y for every $x \in X$;
- $\Phi(\cdot, y)$ is continuously differentiable on dom *h* for every $y \in Y$;
- there exist scalars $(L_x, L_y) \in \mathbb{R}^2_{++}$, and $m \in (0, L_x]$ such that

$$\Phi(x',y) - \left[\Phi(x,y) + \left\langle \nabla_x \Phi(x,y), x' - x \right\rangle_{\mathcal{X}} \right] \ge -\frac{m}{2} \|x - x'\|_{\mathcal{X}}^2$$
$$\left\| \nabla_x \Phi(x,y) - \nabla_x \Phi(x',y') \right\|_{\mathcal{X}} \le L_x \|x - x'\|_{\mathcal{X}} + L_y \|y - y'\|_{\mathcal{Y}}$$

for every $x, x' \in \text{dom } h$ and $y, y' \in Y$.

f can now be nonsmooth and nonconvex but it can easily be approximated by a smooth nonconvex function, namely,

$$f_{\xi}(x) := \max_{y \in \mathcal{Y}} \left\{ \Phi_{\xi}(x, y) := \Phi(x, y) - \frac{1}{2\xi} \|y - y_0\|_{\mathcal{Y}}^2 : y \in Y \right\}$$

where $y_0 \in Y$ and $\xi > 0$

Similar to the one used by Nesterov in his smooth approximation acceleration scheme!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Applying the penalty AIPP method to

$$\min_{x} \{f_{\xi}(x) + h(x) : Ax = b\}$$

for some well-chosen ξ , yields a quintuple $(\bar{u}, \bar{v}, \bar{x}, \bar{y}, \bar{w})$ satisfying

$$\left(\begin{array}{c} \bar{u} \\ \bar{v} \end{array}\right) \in \left(\begin{array}{c} \nabla_{x} \Phi(\bar{x}, \bar{y}) + \mathcal{A}^{*} \bar{w} \\ 0 \end{array}\right) + \left(\begin{array}{c} \partial h(\bar{x}) \\ \left[-\Phi(\bar{x}, \cdot)\right](\bar{y}) \end{array}\right)$$

$$\|\bar{u}\|_{\mathcal{X}}^* \leq \rho_x, \quad \|\bar{v}\|_{\mathcal{Y}}^* \leq \rho_y, \quad \|\mathcal{A}\bar{x} - b\|_{\mathcal{U}} \leq \eta.$$

in a total number of ACG iterations bounded by

$$\mathcal{O}\left(m^{3/2}D_{h}^{2}\left[\frac{L_{x}^{1/2}}{\rho_{x}^{2}}+\frac{L_{y}D_{y}^{1/2}}{\rho_{y}^{1/2}\rho_{x}^{2}}+\frac{m^{1/2}\|\mathcal{A}\|D_{h}}{\eta\rho_{x}^{2}}\right]\right)$$

The complexity is still $\mathcal{O}(1/\eta^3)$ under the assumption that $\rho_x = \rho_y = \eta$.

Concluding Remarks

• We have presented the quadratic penalty AIPP method for "solving" a linearly constrained composite smooth nonconvex program and have shown that its associated bound is

$$\mathcal{O}\left(rac{1}{ar{
ho}^2ar{\eta}}
ight)$$

If instead either the PG or AG method were used to solve subproblems (P_c) , the bound would be $\mathcal{O}\left(1/[\bar{\rho}^2\bar{\eta}^2]\right)$

• We have also argued that the above complexity 'remains the same' in the context of linearly constrained composite nonsmooth nonconvex min-max programs.

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Pen

THE END Thanks!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penal

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example

On first slide.

Example

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Example

On first slide.

Example

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penal

Theorem

On first slide.

Corollary

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penal

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Theorem

On first slide.

Corollary

Theorem

In left column.

Corollary

In right column. New line

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Theorem

In left column.

Corollary

In right column. New line

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

 The Main Problem
 Penalty Problem and Approach
 AIPP Method For Solving the Penalty Subproblem(s)
 Complexity of the Penalty

- You can also specify the text size directly This sentence has 0.5 centimeters of space between lines.

This sentence is 1x the size of normal sentences This sentence is 2x the size of normal sentences

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Main Problem	Penalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penal

- You can control spacing between bullet points with the vspace* command
- This bullet point will have addition vertical spacing after it

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- This bullet point will have less vertical spacing after it
- This is the last item

The Main Problem Pe	enalty Problem and Approach	AIPP Method For Solving the Penalty Subproblem(s)	Complexity of the Penalt

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Perhaps a third message, but not more than that.

- Outlook
 - What we have not done yet.
 - Even more stuff.

A. Author. Handbook of Everything. Some Press, 1990.

S. Someone.

On this and that.

Journal on This and That. 2(1):50–100, 2000.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで